We see far greater risk of massive irreversible sea level rise (SLR) at 2°C, on a scale of 12–20 meters or more in the long term. The climate record of the Earth over the pat few million years is quite clear:
Sea Level Rise from Ice Sheets
We see far greater risk of massive irreversible sea level rise (SLR) at 2°C, on a scale of 12–20 meters or more in the long term. The climate record of the Earth over the pat few million years is quite clear:
Sea Level Rise from Ice Sheets
References Disappearance of Summer Arctic Sea Ice
Chadburn SE, Burke EJ, Cox PM, Friedlingstein P, Hugelius G and Westermann S (2017) An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change ,7(5): 340, doi: 10.1038/nclimate3262
Comyn-Platt E, Hayman G, Huntingford C, Chadburn SE, Burke EJ, Harper AB, Collins WJ, Webber CP, Powell T, Cox PM, Gedney N and Sitch S (2018) Carbon Budgets for 1.5 and 2 C targets lowered by natural wetland and permafrost feedbacks. Nature Geoscience, 11(8): 568, doi: 0.1038/ s41561-018-0174-9
von Deimling TS, Grosse G, Strauss J, Schirrmeister L, Morgenstern A, Schaphoff S, Meinshausen M and Boike J (2015) Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences, 12(11) 3469–3488 doi:10.5194/ bg-12-3469-2015
Gasser T, Kechiar M, Ciais P, Burke EJ, Kleinen T, Zhu D, Huang Y, Ekici A and Obersteiner M (2018) Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nature Geoscience, 11(9): 830-835, doi: 0.1038/ s41561-018-0227-0
Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J and Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11 6573–6593, doi: doi. org/10.5194/bg-11-6573-2014
Hugelius et al. (In review) Large peatland carbon and nitrogen stocks are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America
Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M and Waterfield T (2018) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty
Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J, Rama B and Weyer N (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate
Koven CD, Lawrence DM and Riley WJ (2015) Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings of the National Academy of Sciences of the United States of America, 112(12), 3752–3757, doi: 10.1073/ pnas.1415123112
Lawrence DM, Slater AG and Swenson SC (2012) Simulation of Present-day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4. Journal of Climate, 25(7) 2207- 2225, doi: 10.1175/jcli-d-11-00334.1
MacDougall AH, Avis CA and Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscences, 5(10) 719–721, doi: 10.1038/ NGEO1573
McGuire AD, Lawrence DM, Koven C, Clein JS, Burke E, Chen G, Jafarov E, MacDougall AH, Marchenko S, Nicolsky D, Peng S, Rinke A, Ciais P, Gouttevin I, Hayes DJ, Ji D, Krinner G, Moore JC, Romanovsky V, Schädel C, Schaefer K, Schuur EAG and Zhuang Q (2018) Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences of the United States of America, 115 (15) 3882–3887, doi: 10.1073/pnas.1719903115
Romanovsky V, Isaksen K, Drozdov D, Anisimov O, Instanes A, Leibman M, McGuire AD, Shiklomanov N, Smith S and Walker D (2017) Changing permafrost and its impacts; Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Monitoring and Assessment Programme (AMAP), pp. 65-102.
Schädel C, Bader MKF, Schuur EAG, Biasi C, Bracho R, Capek P, De Baets S, Diakova K, Ernakovich J, Estop-Aragones C, Graham DE, Hartley IP, Iversen CM, Kane ES, Knoblauch C, Lupascu M, Martikainen PJ, Natali SM, Norby RJ, O’Donnell JA, Chowdhury TR, Santruckova H, Shaver G, Sloan VL, Treat CC, Turetsky MR, Waldrop MP, Wickland KP, O’Donnell JA, Chowdhury TR, Santruckova H, Shaver G, Sloan VL, Treat CC, Turetsky MR, Waldrop MP and Wickland KP (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change, 6(10), 950–953, doi: 10.1038/nclimate3054
Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG and Witt R (2014) The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9 085003, doi: 10.1088/1748-9326/9/8/085003